X^2-9x+81/4=129/4

Simple and best practice solution for X^2-9x+81/4=129/4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2-9x+81/4=129/4 equation:



X^2-9X+81/4=129/4
We move all terms to the left:
X^2-9X+81/4-(129/4)=0
We add all the numbers together, and all the variables
X^2-9X+81/4-(+129/4)=0
We get rid of parentheses
X^2-9X+81/4-129/4=0
We multiply all the terms by the denominator
X^2*4-9X*4+81-129=0
We add all the numbers together, and all the variables
X^2*4-9X*4-48=0
Wy multiply elements
4X^2-36X-48=0
a = 4; b = -36; c = -48;
Δ = b2-4ac
Δ = -362-4·4·(-48)
Δ = 2064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2064}=\sqrt{16*129}=\sqrt{16}*\sqrt{129}=4\sqrt{129}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-4\sqrt{129}}{2*4}=\frac{36-4\sqrt{129}}{8} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+4\sqrt{129}}{2*4}=\frac{36+4\sqrt{129}}{8} $

See similar equations:

| -3v+12=5v-40 | | x×x+19x=42 | | Y-3y=9 | | S-6=3s+12 | | 9+2y-8=0 | | 75-7.5n=4n+6 | | 9^x=81^3 | | b=32 | | (2n×7-4)×90=900 | | 80-4x=6x-60 | | m=(27-47)/(23-9) | | 3(w+4)=-3(1.5w-6) | | 63=-4+b | | x+(x*0.18)=536530 | | 3–2x=8x–7 | | x+4)=70)5- | | -d×5d=0 | | .25-10z=15z=-1 | | 5d×(-d)=0 | | 4+3(x–5)=10 | | 2(2x-7)+x=2x+7 | | 4x+4(x+1)=28 | | (2y+1)(y-14)=0 | | 18+12+n=15 | | 18=8m+6–4m | | 7n+8=̄20 | | 7c-(-5)=26c= | | 2/3m+2=21/3m=1/2 | | (N-5)=(n-3) | | 12+x5=20 | | 12a÷32a=0 | | 9^(x)-4*(3^(x))+3=0 |

Equations solver categories